ALVAR 14

Hot work tool steel

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.
General

Alvar 14 is a chromium-nickel-molybdenum-vanadium alloyed steel which is characterized by:

- Good toughness
- Good resistance to high thermal stresses
- Good stability in hardening
- Good through-hardening properties.

Applications

Alvar 14 is ideally suited for hot working tools such as:

- Support parts for extrusion tooling, e.g. backers, bolster
- Hot forging tools
- Die for tin, lead and zinc alloys
- Tools for hot shearing.

Heat treatment

SOFT ANNEALING

Protect the steel and heat through to 700°C (1290°F). Then cool in the furnace at 10°C (20°F) per hour to 650°C (1200°F), then freely in air.

STRESS RELIEVING

After rough machining the tool should be heated through to 650°C (1200°F), holding time 2 hours. Cool slowly to 500°C (930°F), then freely in air.

HARDENING

Pre-heating temperature: 600–700°C (1110–1290°F).

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Soaking time* minutes</th>
<th>Hardness before tempering</th>
</tr>
</thead>
<tbody>
<tr>
<td>850</td>
<td>1560</td>
<td>approx. 58 HRC (O)</td>
</tr>
<tr>
<td>880</td>
<td>1620</td>
<td>approx. 56 HRC (A)</td>
</tr>
</tbody>
</table>

* Soaking time = time at hardening temperature after the tool is fully heated through.

Protect the part against decarburization and oxidation during hardening.

QUENCHING MEDIA

- Air blast/vacuum
- Martempering bath. Temperature 250°C (480°F) for max. 15 minutes, then cooling in air
- Warm oil.

Note: Temper the tool as soon as its temperature reaches 50–70°C (120–160°F).

TEMPERING

Choose the tempering temperature according to the hardness required by reference to the tempering graph. Temper twice with intermediate cooling to room temperature. Lowest tempering temperature 180°C (360°F). Holding time at temperature minimum 2 hours.

Properties

PHYSICAL DATA

Hardened and tempered to hardness 40 HRC. Data at room and elevated temperatures.

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>200°C (390°F)</th>
<th>400°C (750°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density kg/m³</td>
<td>7 800</td>
<td>7 740</td>
</tr>
<tr>
<td>lbs/ft³</td>
<td>0.281</td>
<td>0.279</td>
</tr>
</tbody>
</table>

Coefficient of thermal expansion

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>13.1 x 10⁻⁶</th>
<th>13.9 x 10⁻⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>per °C from 20°C</td>
<td>7.3 x 10⁻⁴</td>
<td>7.7 x 10⁻⁴</td>
</tr>
</tbody>
</table>

Modulus of elasticity

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>215 000</th>
<th>202 000</th>
<th>185 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi</td>
<td>31,2 x 10⁸</td>
<td>29,3 x 10⁸</td>
<td>26,8 x 10⁸</td>
</tr>
</tbody>
</table>

Thermal conductivity

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>36</th>
<th>36.5</th>
<th>36.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/m°C</td>
<td>254</td>
<td>258</td>
<td>260</td>
</tr>
</tbody>
</table>

Typical analysis %

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>0.3</td>
<td>0.7</td>
<td>1.1</td>
<td>1.7</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Standard specification

W.-Nr. 1.2714, DIN 56 NiCrMoV7

Delivery condition

1. Soft annealed to max. 250 HB.
2. Hardened and tempered to 330–400 HB (36–43 HRC; 1100–1350 N/mm²).

Colour code

White/black
NITRIDING
Nitriding will give a hard surface layer which is very resistant to wear and erosion.

Machining recommendations
The cutting data below are to be considered as guiding values which must be adapted to existing local conditions. More information can be found in the Uddeholm publication "Cutting data recommendation".

Condition: Soft annealed to max. 250 HB

TURNING

MILLING
Face and square shoulder milling

<table>
<thead>
<tr>
<th>Cutting data parameter</th>
<th>Rough milling</th>
<th>Fine milling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed (v_c)</td>
<td>m/min.</td>
<td>m/min.</td>
</tr>
<tr>
<td>f.p.m.</td>
<td>170–250</td>
<td>560–820</td>
</tr>
<tr>
<td>Feed (f), mm/tooth inch/tooth</td>
<td>0,2–0,4</td>
<td>0,008–0,016</td>
</tr>
<tr>
<td>Depth of cut (a_p) mm inch</td>
<td>2–5</td>
<td>0,08–0,20</td>
</tr>
<tr>
<td>Carbide designation ISO US</td>
<td>P20–P40</td>
<td>C6–C5</td>
</tr>
</tbody>
</table>

Coated carbide or cermet

End milling

<table>
<thead>
<tr>
<th>Cutting data parameter</th>
<th>Type of milling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed (v_c) m/min.</td>
<td>Solid carbide</td>
</tr>
<tr>
<td>Feed (f), mm/tooth inch/tooth</td>
<td>0,006–0,20</td>
</tr>
<tr>
<td>Carbide designation ISO US</td>
<td>K10, P40</td>
</tr>
</tbody>
</table>

1) For coated HSS end mill v_c = 45–50 m/min. (148–164 f.p.m.).
2) Depending on radial depth of cut and cutter diameter.

DRILLING
High speed steel twist drill

<table>
<thead>
<tr>
<th>Drill diameter Ø mm inch</th>
<th>Cutting speed (v_c) m/min.</th>
<th>Feed (f) mm/r i.p.r.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 –5 3/16</td>
<td>15–17°</td>
<td>49–56°</td>
</tr>
<tr>
<td>5–10 5/32 5/16–3/8</td>
<td>15–17°</td>
<td>49–56°</td>
</tr>
<tr>
<td>10–15 3/8 7/32–5/8</td>
<td>15–17°</td>
<td>49–56°</td>
</tr>
<tr>
<td>15–20 5/8 15–17°</td>
<td>49–56°</td>
<td>0,25–0,30</td>
</tr>
<tr>
<td>15–20 5/8 15–17°</td>
<td>49–56°</td>
<td>0,25–0,30</td>
</tr>
</tbody>
</table>

* For coated HSS drill v_c = 26–28 m/min. (85–92 f.p.m.).

Carbide drill

<table>
<thead>
<tr>
<th>Cutting data parameter</th>
<th>Type of drill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed (v_c) m/min.</td>
<td>Solid carbide</td>
</tr>
<tr>
<td>Feed (f), mm/r i.p.r.</td>
<td>0,05–0,10</td>
</tr>
</tbody>
</table>

1) Drill with internal cooling channels and brazed tip.
2) Depending on drill diameter.
Condition: Prehardened to 380 HB

TURNING

<table>
<thead>
<tr>
<th>Cutting data parameter</th>
<th>Turning with carbide</th>
<th>Turning with high speed steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed (v_c) m/min. f.p.m.</td>
<td>Rough turning</td>
<td>Fine turning</td>
</tr>
<tr>
<td>Feed (f) mm/r i.p.r.</td>
<td>0,2–0,4</td>
<td>0,008–0,016</td>
</tr>
<tr>
<td>Depth of cut (a_p) mm inch</td>
<td>2–4</td>
<td>0,08–0,16</td>
</tr>
<tr>
<td>Carbide designation, ISO US</td>
<td>P20–P30 C6–C5 Coated carbide</td>
<td>P10–P20 C6–C5 Coated carbide or cermet</td>
</tr>
</tbody>
</table>

MILLING

Face and square shoulder milling

<table>
<thead>
<tr>
<th>Cutting data parameter</th>
<th>Milling with carbide</th>
<th>Fine milling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed (v_c) m/min. f.p.m.</td>
<td>Rough milling</td>
<td>Fine milling</td>
</tr>
<tr>
<td>70–140</td>
<td>230–460</td>
<td>140–170</td>
</tr>
<tr>
<td>Feed (f), mm/tooth inch/tooth</td>
<td>0,2–0,4</td>
<td>0,008–0,016</td>
</tr>
<tr>
<td>Depth of cut (a_p) mm inch</td>
<td>2–5</td>
<td>0,08–0,2</td>
</tr>
<tr>
<td>Carbide designation ISO US</td>
<td>P20–P40 C6–C5 Coated carbide</td>
<td>P10–P20 C6–C5 Coated carbide or cermet</td>
</tr>
</tbody>
</table>

End milling

<table>
<thead>
<tr>
<th>Cutting data parameter</th>
<th>Type of milling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed (v_c) m/min. f.p.m.</td>
<td>Solid carbide</td>
</tr>
<tr>
<td>60–100</td>
<td>200–330</td>
</tr>
<tr>
<td>Feed (f), mm/tooth inch/tooth</td>
<td>0,006–0,20</td>
</tr>
<tr>
<td>Carbide designation ISO US</td>
<td>K10, P40 C3, C5</td>
</tr>
</tbody>
</table>

DRILLING

High speed steel twist drill

<table>
<thead>
<tr>
<th>Drill diameter (\Phi) mm inch</th>
<th>Cutting speed (v_c) m/min. f.p.m.</th>
<th>Feed (f) mm/r i.p.r.</th>
</tr>
</thead>
<tbody>
<tr>
<td>–5</td>
<td>–3/16</td>
<td>10–12</td>
</tr>
<tr>
<td>5–10</td>
<td>3/16–3/8</td>
<td>10–12</td>
</tr>
<tr>
<td>10–15</td>
<td>3/8–5/8</td>
<td>10–12</td>
</tr>
<tr>
<td>15–20</td>
<td>5/8–3/4</td>
<td>10–12</td>
</tr>
</tbody>
</table>

* For coated HSS drill \(v_c = 16–18\) m/min. (53–59 f.p.m.).

Carbide drill

<table>
<thead>
<tr>
<th>Cutting data parameter</th>
<th>Type of drill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed (v_c) m/min. f.p.m.</td>
<td>Indexable insert</td>
</tr>
<tr>
<td>150–170</td>
<td>492–558</td>
</tr>
<tr>
<td>Feed (f) mm/r i.p.r.</td>
<td>0,05–0,10</td>
</tr>
</tbody>
</table>

1) Drill with internal cooling channels and brazed tip.
2) Depending on drill diameter.

GRINDING

A general grinding wheel recommendation is given below. More detailed information can be found in the Uddeholm publication “Grinding of Tool Steel”.

<table>
<thead>
<tr>
<th>Type of grinding</th>
<th>Wheel recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft annealed condition</td>
<td>Prehardened condition</td>
</tr>
<tr>
<td>Face grinding</td>
<td>A 46 HV</td>
</tr>
<tr>
<td>Face grinding segments</td>
<td>A 24 GV</td>
</tr>
<tr>
<td>Cylindrical grinding</td>
<td>A 60 KV</td>
</tr>
<tr>
<td>Internal grinding</td>
<td>A 46 JV</td>
</tr>
<tr>
<td>Profile grinding</td>
<td>A 100 KV</td>
</tr>
</tbody>
</table>

1) For coated HSS end mill \(v_c = 20–25\) m/min. (66–82 f.p.m.).
2) Depending on radial depth of cut and cutter diameter.
Electrical-discharge machining

If spark-erosion is performed in the hardened and tempered condition, the white re-cast layer should be removed mechanically e.g. by grinding or ston- ing. The tool should then be given an additional temper at approx. 25°C (50°F) below the previous tempering temperature.

More information is given in the Uddeholm brochure “EDM of Tool Steel”.

Welding

Welding of tool steel can be performed with good results if proper precautions are taken regarding elevated temperature, joint preparation, choice of consumables and welding procedure.

<table>
<thead>
<tr>
<th>Welding method</th>
<th>TIG</th>
<th>MMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filler metals</td>
<td>UTPA 73G4 ESAB 83.28</td>
<td>UTP 73G4 ESAB 83.28</td>
</tr>
<tr>
<td>Hardness after welding</td>
<td>350–400 HB</td>
<td>340–390 HB</td>
</tr>
</tbody>
</table>

More detailed information can be found in the Uddeholm brochure "Welding of Tool Steel".

Further information

Please contact your local Uddeholm office for further information on the selection, heat treatment, application and availability of Uddeholm tool steels.
we can be trusted. Meet us under the Uddeholm and ASSAB brands, As the world's leading supplier of tooling materials and related services, the process to the release of the new product, we'll be your partner. When the first idea pops into your head, throughout the development process.

Greece
UDDEHOLM STEEL TRADING COMPANY
20, Aichinou Street
G-Piraeus 18540
Telephone: +30 2 10 41 72 109/41 29 820
Telefax: +30 2 10 41 72 76 77
SKLERO S.A.
Steel Trading Comp. and Hardening Shop
Frঙe 5/11, Kifissia, Athens
G-54627 Thessaloniki
Telephone: +30 31 54 16 77
Telefax: +30 31 54 12 50

Hungary
UDDEHOLM TOOLING/BOK
Dunaharaszti, Jókai Út 15
H-2311 Dunaharaszti 1 Pl. 110
Telephone/Telefax: +36 24 492 690

Italy
UDDEHOLM Italia S.p.A.
Via Palizzi, 90
I-20157 Milano
Telephone: +39 02 35 79 41
Telefax: +39 02 390 024 82

Latvia
UDDEHOLM TOOLING AB
Daglava street 50
LV-1035 Riga
Telephone: +37 1 701 983., -981., -982.
Telefax: +37 1 701 984

Lithuania
UDDEHOLM TOOLING AB
BE PIENAS IR METALAI
T. Masulion 1Bb
LT-3014 Kaunas
Telephone: +370 37 37013., -669.
Telefax: +370 37 370300

The Netherlands
UDDEHOLM B.V.
Isolatorweg 30
NL-1014 AS Amsterdam
Telephone: +31 20 684 86 13

Norway
UDDEHOLM A/S
Jernkroken 18
Postboxs 85, Kalbakken
N-0902 Oslo
Telephone: +47 22 91 80 00
Telefax: +47 22 91 80 01

Poland
INTER STAL CENTRUM
Sp. z o.o./Co. Ltd.
iul. Kodowaja 291, Dzierzéskow Polski
PL-05-092 Lomianki
Telephone: +48 22 429 2260
Telefax: +48 22 429 2266

Portugal
F RAMADA Aços e Indústrias S.A.
P.O. Box 10
P-3881 Over Codex
Telephone: +351 56 58 61 11
Telefax: +351 56 58 60 24

Romania
BOHLER Romania SRL
Uddeholm Branch
Str. Atamâstilor Nr. 16A
071125 Magurele Jud Ilfov
Telephone: +40 214 575007
Telefax: +40 214 374212

Russia
UDDEHOLM TOOLING CIS
25 A Bolshoym pr PS
197198 St. Petersburg
Telephone: +7 812 233 9683
Telefax: +7 812 232 4679

Slovakia
UDDEHOLM Slovakia
Nástrôjové ocele, s.r.o.
KRÁCNÝ 2
036 01 Martin
Telephone: +421 642 4 300 823
Telefax: +421 642 4 322 034

Sweden
UDDEHOLM Italy S.p.A.
Via Palizzi, 90
I-20157 Milano
Telephone: +39 02 35 79 41
Telefax: +39 02 390 024 82

Spain
UDDEHOLM Guipúzcoa 690-692
E-08918 Badalona, Barcelona
Telephone: +39 93 460 1227
Telefax: +39 93 460 05 58
Branch office
UDDEHOLM
Barrio San Martín de Artega, 132
Pol.Ind. Torrelagarto
E-48170 Zamudio
(Bitaka)
Telephone: +34 94 452 13 03
Telefax: +34 94 452 13 38

Ud-deholm North America
usa
UDDEHOLM 4902 Tollview Drive
Rolling Meadows IL 60008
Telephone: +1 847 877 22 20
Telefax: +1 847 877 80 28

UDDEHOLM 548 Clayton Cr.
Wood Dale IL 60191
Telephone: +1 630 350 10 00
Telefax: +1 630 350 08 80

UDDEHOLM 9331 Santa Fe Springs Road
Santa Fe Springs, CA 90670
Telephone: +1 562 946 65 03
Telefax: +1 562 946 77 21

UDDEHOLM 220 Cherry Street
Shrewbury, MA 01545
Telephone: +1 508 845 10 00
Telefax: +1 508 845 03 71

canada
UDDEHOLM LIMITED
2595 Meadowvale Blvd.
Mississauga, Ontario LSN 7Y3
Telephone: +1 905 812 9440
Telefax: +1 905 812 8659

Mexico
ACEROS BOHLER UDDEHOLM, S.A. de C.V.
Calle 8 No 2, Letra “C”
Fraccionamiento Industrial Alce Blanco
C.P. 52787 Naucalpan de Juarez
Estado de Mexico
Telephone: +52 55 9172 0242
Telefax: +52 55 5576 6837

UDDEHOLM Lerdo de Tejada No.542
Colonia Las Villas
2595 Meadowvale Blvd.
Telephone: +52 8-352 5239
Telefax: +52 8-352 5356

UDDEHOLM South America
Argentina
UDDEHOLM S.A.
Mozart 40
1619 Centro Industrial Garin
Garin-Prov. Buenos Aires
Telephone: +54 332 744 4440
Telefax: +54 332 744 3222

Brazil
UDDEHOLM ACOS ESPECIAL Ltda.
Estada Yera Masumoto, 353
CEP 09942-160
São Bernardo do Campo - SP Brazil
Telephone: +55 11 4393 4560., -4554
Telefax: +55 11 4393 4561

Ud-deholm South Africa
UDDEHOLM Africa (Pty) Ltd.
P.O. Box 339
ZA-1600 Island/JOHANNESBURG
Telephone: +27 11-974 2781
Telefax: +27 11-392 2486

ASSAB
ASSAB INTERNATIONAL
Skynaholmsvägen 2
P O Box 42
SE-171 11 Solna
Sweden
Telephone: +46 8 564 616 70
Telefax: +46 8 562 02 37

Subsidiaries
India, Iran, Turkey, United Arab Emirates
Distributors in
Africa, Latin America, Middle East

ASSAB Pacific
ASSAB Pacific Pte. Ltd.
171, Chin Swee Road
No. 07-02, Sun Centre
Singapore 169877
Telephone: +65 534 56 00
Telefax: +65 534 06 55

Subsidiaries
China, Hong Kong, Indonesia, Japan,
Korea, Malaysia, Philippine Islands,
Singapore, Taiwan, Thailand

When the first idea pops into your head, throughout the development process to the release of the new product, we’ll be your partner. As the world’s leading supplier of tooling materials and related services, we can be trusted. Meet us under the Uddeholm and ASSAB brands, wherever in the world you have your business.